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The flow past a circular cylinder in a rotating frame is examined when the Rossby 
number Ro is O(l$ ) ,  where E is the Ekman number. Previous studies of the 
configuration have shown that, provided the ratio RoIE! is less than a certain critical 
value, the flow around the cylinder is determined by the classical potential-flow 
solution. However, once Roll& is greater than that critical value the B layer on the 
surface of the cylinder, which is rather like a boundary layer in a high-Reynolds- 
number non-rotating fluid, can separate from the cylinder and distort the potential 
flow. In this study the form of the flow once separation has occurred is examined using 
a method analogous to the Kirchhoff free-streamline theory in a non-rotating fluid. 
The results are compared with published experimental and numerical data on the flow 
for various values of Roll&. 

1. Introduction 
In  this paper the flow of a rotating fluid of finite depth past an axial circular 

cylinder will be examined when the Ekman number E is small and the Rossby number 
Ro is O ( @ ) .  The flow in this configuration has been examined in a number of previous 
theoretical studies, namely Barcilon (1970), Walker & Stewartson (1972), Merkine 
& Solan (1979), Page (1985) and Page & Cowley (1987), in two experimental studies 
by Boyer (1970) and Boyer & Davies (1982), and in a recent numerical study by 
Matsuura & Yamagata (1985). To date, however, the theoretical studies have been 
confined to the parameter ranges where the flow is fully attached, thereby consider- 
ably restricting the possibility of their comparison with the experimental results, 
which often show separated flow. In  this paper a theory is proposed which aims to 
describe the flow once separation has occurred and a stagnant region of fluid has 
formed downstream of the cylinder. This theory includes the important effects due 
to Ekman suction, but otherwise neglects viscous effects in the main body of the fluid. 
This can be expected to be an accurate representation provided the Ekman number 
is sufficiently small so that the ,@ layers occupy only very thin regions of the flow. 

As mentioned above, a considerable amount of work has previously been done on 
the attached-flow problem for flow past a cylinder. For Ro = O(l$)  and E 4 1 the 
flow can be described in terms of the single parameter h = Ro/2l&, and Barcilon 
(1970) demonstrated that for small enough values of A the motion in the ‘interior’, 
which is most of the fluid, is irrotational with the streamlines following the classical 
potential-flow solution for two-dimensional flow past a cylinder. Close to the cylinder 
surface there is a thin layer, known as an layer, across which the flow adjusts to 
the no-slip condition. It turns out that the flow in this layer can be calculated exactly 
for h 4 1, and that it has a simple exponential profile with a uniform displacement 
thickness. For larger values of Ro, so that h is 0(1), the interior flow is unchanged 
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but the flow in the .!8 layer is governed by a nonlinear equation for which no exact 
solution is available. At  this point Walker & Stewartson appealed to earlier work on 
the magnetohydrodynamic flow past a cylinder, by Leibovich (1967) and Buckmaster 
(1969), and concluded that for h > a a singularity develops within the layer at  the 
rear stagnation point. In addition, Buckmaster (1969) was able to show that the flow 
remains fully attached a t  this point, and in fact remains attached at least until h 3 t .  
The precise details of the flow in the .!8 layer between these two critical values were 
unclear at that stage, although Buckmaster (1971) had made an attempt to describe 
it, and i t  was left to Page (1985) and Page & Cowley (1987) to clarify the structure. 
From the analysis in these studies it is clear that a thin wake forms behind the 
cylinder for < h < + and that separation occurs once A > ?j. The aim of this study 
is to calculate the flow when h > 4, for which the & layer has separated from the 
cylinder and distorted the interior flow. 

The first step in the calculation of the flow beyond separation is to recognize that 
in any closed-streamline region, such as the separation bubbles which appear to form 
in the experiments of Boyer & Davies (1982), the flow is stagnant owing to the 
exponential decay of vorticity along streamlines, arising through Ekman suction. In 
addition, the-flow outside the separation bubble is irrotational, just as it is for the 
fully attached flow, and it moves around the bubble as if it were part of the solid 
obstacle. It then remains to connect these two flow regions together through some 
sort of relationship to be satisfied on their common boundaries. This situation is 
similar to that which occurs for high-Reynolds-number flow of a non-rotating fluid 
past a circular cylinder, and for that case a theory was proposed by Smith (1979) 
which was based upon the so-called Kirchhoff free-streamline theory. This theory 
was later modified in Smith (1985) to incorporate a Sadovskii (1971) vortex in the 
eddy-scale flow, but these modifications do not really affect the structure in this paper 
since such a vortex will not be found in a rotating flow. As in Smith (1979), the flow 
under consideration here relies upon the leading-order flow inside the separation 
bubble being stagnant and on the pressure being continuous across the bounding 
streamline. In  a non-rotating fluid Bernoulli’s equation can then be used to deduce 
that the velocity is constant along the bounding streamline, which in turn enables 
the position of that streamline to be calculated. The main difference between that 
situation and the rotating flow is that for the latter there can be no immediate appeal 
to Bernoulli’s equation, owing to the complicating presence of Coriolis forces. 
Therefore, in this paper an equivalent condition will be derived which enables the 
free-streamline theory to be extended to these flows, from which the streamline 
patterns for the inviscid separated flow can be computed. 

The plan of the paper is as follows: in $2 the general equations and properties of 
rotating flows at  low Rossby numbers will be outlined, before a perturbation analysis 
is performed for E Q 1 in $3 to derive the equations for the leading-order velocities 
in the interior flow. These equations are very similar to the Euler equations for 
non-rotating flow except for an extra linear ‘friction’ term which arises through 
Ekman suction. Then in $4 a modified Bernoulli equation for that flow is derived, 
enabling a free-streamline theory to be outlined in $5. Some properties of this flow 
are described in $6, and in $7 the numerical method used to calculate solutions to 
the proposed problem is outlined. It then remains to examine the results of these 
calculations in $8  and to compare them with the experimental results of Boyer & 
Davies (1982) and the numerical results of Matsuura & Yamagata (1985), which are 
for finite values of the Ekman number E. Finally, some proposals on the form of the 
more detailed structure, which needs to be considered once higher-order terms in the 
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flow fields are taken into account, are outlined in $9, based partly on the features 
of the equivalent non-rotating problem in Smith (1979, 1985). 

2. Formulation 
Consider a homogeneous viscous fluid, of density p* and constant kinematic 

viscosity v*, which is confined between two infinite parallel plates, a distanced* apart, 
and where the entire configuration is rotating with a uniform angular velocity Q*& 
about an axis perpendicular to the plates. Relative to this rotating system, a circular 
cylinder of radius 1* is placed in the fluid, with its axis parallel to R ,  and the fluid 
is forced past the cylinder by imposing a uniform flow with speed U* at infinity. Based 
on these dimensional quantities, three important dimensionless parameters can be 
defined, namely 

and these will be referred to as the Rossby number, Ekman number and scaled depth 
respectively. In this paper, as in Walker & Stewartson (1972) and Page (1982a, 1985), 
both Ro and E are considered to be small, and in particular Ro is taken to be O(&). 
Note, however, that for convenience the definitions of Ro and E used in this paper 
are slightly different from those in the previous studies. The scaled depth d is assumed 
to be 0(1) with respect to E. 

Although the geometry of this configuration is cylindrical, it is generally more 
convenient to use a Cartesian rather than a polar coordinate system to describe the 
flow. An exception arises when referring to the cylinder surface, r = (x2 + y2)t = 1 , but 
this should usually be clear by the context. The coordinate system is chosen with the 
z* axis coincident with the axis of the cylinder and the x* axis in the direction of 
the imposed flow at infinity. Dimensionless position and velocity, relative to the 
rotating frame, can then be defined as x = (2, y, z )  = x*/l* and u = (u, w, w) = u*/U* 
respectively, where I* and U* have been chosen as appropriate length and velocity 
scales. The fluid is therefore contained in the region with r > 1 and 0 < z < d, and 
the velocity tends to u = (1 ,0 ,0)  as r+  00. The equations for a steady flow in these 
coordinates are 

(2.2) 

v - u  = 0, (2.3) 

Ro(u*V)U+~(R x U) = -VP+d2EV2U, 

where the dimensional pressure p* has been scaled to the reduced pressure 

p*-l+p*Q*2r*2 

p*U*Q*l* ’ 
P =  

after removing the centrifugal contribution (which does not affect the motion in a 
closed container). The boundary condition u = 0 is applied on all solid surfaces, 
namely r = 1 and z = 0, d. 

The features of low-Rossby-number, small-Ekman-number flow are now fairly well 
known; see for example chapter 2 of Roberts & Soward (1978), Walker & Stewartson 
(1972) or Page (1982a, 1985). The main region of the flow is the ‘interior’ and this 
is separated from solid boundaries either by Ekman layers, on surfaces which are not 
parallel to the rotation axis, or by sidewall boundary layers, which occur on surfaces 
parallel to the rotation axis (such as the cylinder surface). From the Taylor-Proud- 
man theorem, the flow in the interior is, to leading order, both two-dimensional and 
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geostrophic, so that the leading-order reduced pressure is both constant along 
streamlines of the flow and independent of the depth z. The Ekman layers, which 
are within O(B) of the surfaces z = 0 and z = d ,  are viscous regions which ensure that 
u = 0 on those surfaces. It can be shown that one effect of these layers is to induce 
a velocity of O(B) into, or out of, the interior and this will be seen to induce a frictional 
effect on the interior flow, through vortex stretching. The sidewall layers, generally 
known as Stewartson layers when Ro = 0 ,  are also viscous regions and they are 
divided into two parts: a thicker geostrophic layer of thickness O ( a )  which ensures 
that u = v = 0 on the sidewalls; and a thinner ageostrophic layer of thickness O(B) 
which ensures not only that w = 0 but also closes the higher-order mass flux in the 
fluid. This paper will concentrate on the interior flow but will attempt to include the 
effects of the E! layer on that flow, through flow separation off the cylinder and the 
formation of free shear layers within the interior flow. Unlike the ,?& layers which 
are attached to a surface, these free shear layers do not enclose an E? layer, rather 
like the layer in the wake of the flat plate in Page (1983). 

3. Governing equations for the interior flow 

unity, satisfies the geostrophic equation 
For Ro of O(E?) it  follows from (2.2) that the leading-order flow u,, for x of order 

(3.1) 2(k x u,) = -vP,, 
where P, is independent of z and wo = 0. Using (3.1) with (2.3), it follows that a stream 
function $o can be defined with 

where $, = ?&,, but in order to determine $, it is necessary to examine higher-order 
terms in (2.2), namely those of order I&. An equivalent method is to use the same 
arguments as Page (1982a, 1985), introducing the axial component of vorticity 
go = V2$ot, and then deriving a vorticity equation from the curl of (2.2). 

Since both Ro and the Ekman suction velocity w are O(B) it is appropriate to 
expand all dependent variables in series in powers of I&, for example 

P =  &+I&<+ EP,+ ..., (3.3) 

and to define the parameter h = Ro/2l&, similar to that used in Page (1982a, 1985). 
Using (2.2) to leading order gives (3.1), and second-order terms give 

ap1 

ap, 2h u , - + v , ~  +2u, = --, 

2A uo-+v auo - " 0 )  -2v 1 =-- a x ,  ( ax 0 ay 

( avo ax ay 1 a Y  

( 3 . 4 4  

(3.4b) 

with (3.5) 

t Here and in the remainder of this paper V2 refers to the two-dimensional Laplacian. 
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from (2.3). From ( 3 . 4 ~ )  it  follows that e, like P,, is independent of z and it is then 
straightforward to show that u,, wl and hence awl/az are also independent of 2. Using 
the Ekman conditions on z = 0 and z = d it follows that 

(3.7) 
a a 
- (ul - wo) +- (wl + uo) = 0.  
ax aY 

so that, using (3.5), 

It is then possible to define a function 
the non-divergent part of the second-order flow, such that 

which is essentially a stream function for 

and substituting into (3.4a, b) then gives 

al: 2h u o ~ + w o -  + 2 u o = - - ,  ( ax ””> ay ax 

(3 .8)  

(3.9a) 

(3.9b) 

where 5: = 4 - 21,h~. Note that these equations now involve only the leading-order 
velocity components, and they form in effect the momentum equations for those 
components. Their resemblance to the two-dimensional Euler equations is striking, 
the only differences being that the parameter 2 A  multiplies the advective term and 
the presence of a linear ‘friction’ term, due to Ekman-layer effects. Together, (3.2) 
and (3 .9)  provide four independent equations in four unknowns (u,,, wo, $o and 19) 
and these can, in principle, be solved in the same manner as might be used to 
determine the flow of an inviscid non-rotating fluid. 

The derivation above is strictly only valid in the interior, where the flow varies 
on an O( 1 )  lengthscale, but it can be readily generalized to include viscous effects in 
the layer, which is also geostrophic. In that case the terms d2hlV2uo and d2,?$V2wo 
appear on the right-hand sides of ( 3 . 9 ~ )  and (3.9b), respectively. 

4. Modified Bernoulli equation 
The governing equations for the interior flow (3 .9)  can be used to derive a useful 

condition along the leading-order streamlines, analogous to the Bernoulli equation 
in an inviscid non-rotating fluid. This condition is, in some sense, a generalization 
of the constraint derived by Davey (1978) for the circulation around closed 
streamlines of the flow. 

Writing (3.9) in a right-handed coordinate system (8, n),  where s is the distance 
along a streamline measured in the direction of the flow and n is normal to that 
streamline, implies that 

au0 1 aP, 
as 0 2 as 

AUo-+ u = 
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with Uo = (u.3) as the velocity along the streamline. For a region of the fluid bounded 
by a closed streamline, on which ~o is constant, (4.1) can be integrated around that 
streamline to give 

Uods=- i [Aq+e]  = O ,  
+*o = const 

so the circulation around such a curve is zero. The same is true for all closed curves 
enclosed within the curve above, and from this it can be deduced that the flow in 
any closed-streamline region must be irrotational. Since $o is constant on its 
boundary, i t  is then straightforward to show that $o is constant everywhere within 
that region, and hence that the flow is stagnant in any region enclosed by a closed 
streamline. From either (3.9) or (4.1) i t  is also clear that 8 must be constant in such 
regions. In $9 it will be become apparent that there is also an O(&) contribution to 
the pressure in the interior, but this will not, in fact, affect these conclusions because 
that pressure contribution is geostrophic and hence can be lumped with the 
leading-order term. 

As mentioned above, the condition (4.2) is similar to the circulation derived by 
Davey (1978), and used in both that paper and Page (19824. If $2 were reformulated 
to allow the lid of the container, at z = d ,  to move with a specified velocity then, after 
appropriate modification to the Ekman conditions which lead to (3.6), the condition 
(4.2) is replaced by 

r 

where U,,, is the component of the lid velocity in the direction of the streamline. This 
equation is identical with that derived in Davey (1978) using detailed mass-flux 
arguments. An extension to the case where the base of the container is also in motion 
is straightforward. 

By including the O(B) viscous terms in (3.9) it is also possible to derive a form 
of (4.1) which is valid within the geostrophic ,?!i$ layers. The algebraic details are 
omitted here, but using the same method as above gives that 

where (4.5) 

is the leading-order component of vorticity in the l-direction, and S = d(+@)t is the 
scale thickness of the layer (similar to that in Page 1982a, 1985 after appropriate 
redefinition of Ro and E ) .  Integrating (4.4) around a stationary solid surface, on which 
Uo = 0 through the no-slip condition, leads to the constraint 

which is the equivalent version to (4.2) for the full geostrophic flow, in the sense 
defined in Page (1982b). This condition can be used on such flows in a similar manner 
to the way in which Davey (1978) and Page (1982a) used (4.3), where it removed 
the non-uniqueness in the solution of Poisson’s equation V2$o = fo for a multiply 
connected region. 

As a further sidenote, flows in a container with ‘bottom topography’, such as those 
in Page (1982a, b ) ,  have Bernoulli equations identical with (4.1) and (4.4) through 
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- 
FIGURE 1.  Schematic diagram of the leading-order flow regions referred to in $5. 

the appropriate modifications to (3.6) and (3.8). This leads to additional terms on 
the left-hand side of (3.9a, b) which cancel each other when (4.1) is derived. As a result, 
most of the theory in this paper can be extended to flows with bottom topography, 
or equivalently to flows on a /3-plane, with little additional effort, although of course 
such flows will not be irrotational. 

5. Free-streamline flows 

satisfies the equation 
From (3.9) it can be shown that the leading-order vorticity 5, for the interior flow 

along the streamlines $o = constant. As a result, the vorticity C0 decays exponentially 
along the streamlines, over a distance of O(AUo), so that if the flow is uniform far 
upstream of the obstacle then the vorticity 5, must be zero everywhere in the interior. 
Exceptions to this arise when a streamline comes close to a solid boundary, where 
vorticity is generated and then convected and diffused within the layers. For flow 
past a circular cylinder Walker & Stewartson (1972) and Page (1985) show, after the 
slightly different definitions of A are taken into account, that when h is less than a 
these ,!$ layers remain attached to the cylinder surface and the vorticity is confined 
to within a distance of O(S) from the cylinder. For a < A < + the E! layers remain 
attached to the cylinder but a thin wake, also of thickness O(S), forms behind the 
cylinder. In this the vorticity decays exponentially, as would be expected from (5.1) 
and as also occurs for the wake of a flat plate in Page (1983). Once h > + both Walker 
& Stewartson (1972) and Page (1985) conclude that the layer separates from the 
cylinder, rather like the equivalent non-rotating flow a t  high Reynolds number, and 
forms a thin free shear layer within the interior flow. It might then be expected, and 
this is confirmed by the experiments in Boyer & Davies (1982), that these free shear 
layers enclose a finite region of interior flow ; in fact, it  will be seen later in this section 
that they cannot exist freely in this flow without joining each other downstream of 
the cylinder. As was seen in $4, this implies that the flow in the enclosed region, which 
is bounded by either the free shear layer or the obstacle, must be stagnant and that 
both $o and 8 are constant inside it. The positions of the free shear layers are then 
determined by ensuring that the modified pressure p, is constant along them, similar 
to the requirement on Kirchhoff flows in a non-rotating fluid. 

Based on the arguments outlined above, the general features of the interior flow 
once separation has occurred can be postulated and these are shown schematically 
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in figure 1. In fact, the flow within region I1 is rather more complicated than 
indicated, but this will be readdressed in $9 when higher-order effects are examined. 
In region I all interior flow streamlines originate from far upstream of the cylinder 
where the flow is uniform and irrotational, and therefore the flow in the whole of 
that region satisfies 

using the arguments outlined in the first paragraph above. From the discussion in 
$4, or alternatively from (5.1), it is clear that within region I1 the leading-order 
stream function $, is constant, and without loss of generality it can be set to zero. 
Region 111, represents the l& layer on the surface of the cylinder which separates 
before the rear stagnation point; as in Smith (1979,1985), this flow does not encounter 
a Goldstein-type singularity (Goldstein 1948) at the separation point, but rather 
leaves the cylinder surface smoothly to form into the free shear layer in region 111,. 
Since the two free shear layers, one on each side of the cylinder, are aligned with the 
leading-order flow in region I, they lie along the streamlines of that flow and hence 
are referred to as free streamlines. The final region shown in figure 1, region III,, forms 
the wake of the bubble and, like regions 111, and III,, its thickness is O(6).  Once 
the positions of the free streamlines are known the effective shape of the obstacle 
becomes a combination of the forward face of the circle, where region 111, is still 
attached, and the stagnant fluid in region 11. It is then a straightforward application 
of potential theory to calculate the interior in region I, although in practice the 
interrelationship between regions I and 11, through region 111,, makes the calculation 
rather more complicated. Note that region 111, would not affect this calculation since 
it has effectively zero thickness and transports no fluid to leading order. 

The key to the structure above is the shape of the free streamline. Flows of this 
form have been examined previously in non-rotating fluids, originating from studies 
by Helmholtz and Kirchhoff on flow past a flat plate at  right angles to an oncoming 
stream. In that case it is possible to show, based on a different set of equations to 
(3.9), that the streamwise velocity U, is constant along the free streamlines. This, 
in turn leads to the stagnant region I1 being infinite in downstream extent, with its 
width asymptotically proportional to the square root of the distance downstream. 
Flows of this form were examined further by Brodetsky (1923), Kawaguti (1953), 
Imai (1953) and Woods (1955), and are described in detail in Thwaites (1960, p. 150). 
More recently, finite-sized free-streamline flows containing constant-vortex regions 
have also been the subject of some interest (J. H. B. Smith, 1986) and these are 
closely related to the flow considered here. It therefore remains to extend such results 
to a flow in a low-Rossby-number rotating fluid. 

The property stated above that U, is constant along free streamlines in a 
non-rotating fluid is a consequence of the leading-order pressure being constant in 
the separated region, and continuous across the thin shear layers which form the free 
streamlines. Then, from Bernoulli’s equation, the velocity V,  must also be constant 
on the outer edge of the free shear layers. For a flow in a rotating frame the letter 
is not available, and furthermore the leading-order pressure P, is already constant 
on streamlines since $, = iP,. However, the modified Bernoulli equation (4.1) gives 
further information because U, = 0 everywhere in region I1 and therefore 4 is a 
constant. In  addition, it is straightforward to show that, as in a non-rotating flow, 
the quantity is continuous across the thin shear layers in region 111,. Applying 
(4.1) again on the outer edge of those layers, it follows that either U, = 0 or 

co = V2$, = 0, (5.2) 
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on the free streamlines, and clearly the latter is most appropriate for that side of the 
shear layers. This requires that U, decrease linearly along the free streamlines, so that 

(5.4) 

for s 2 s,, where s, is the arclength along the cylinder at which the Z& layer separates, 
measured from the forward stagnation point. Note that U, must be continuous at  
s,, ensuring that the free streamline leaves the cylinder smoothly. 

An alternative derivation of (5.4) can be obtained by careful examination of the 
layer in region 111,, which separates from the cylinder at s,. The equations for the 

flow in this layer are fairly standard, see for example $4 of Page (1982a), and in these 
the right-hand side of the momentum equation has a pressure-gradient-like term of 

AU,-+ dU0 u, 
ds 

in the current coordinates. Matching with a stagnant flow on one side of the Z& layer 
requires that this term be identically zero, and this in turn leads to the condition (5.3) 
on the flow on the other side. More details of the flow in this shear layer are discussed 
in $9. 

Having determined the condition on the free streamline, it remains to consider 
whether the flow is now uniquely specified by the boundary conditions on the 
cylinder, the free streamline and at infinity. In a non-rotating fluid the Kirchhoff 
free-streamline flow is not unique unless the point of separation s, is specified in some 
way, and it is reasonable to expect that the same is true for the problem proposed 
above (particularly as it will be seen that they are essentially identical when h B 1). 
Reviewing the work on the non-rotating problem, Imai (1953) points out that the 
values of s, for which a suitable solution exists, with streamlines crossing neither the 
cylinder nor each other, are between s, x 0.96 and s, x 2.09. In the absence of viscous 
effects there is no a priori reason to choose any particular one of these values of s, 
because all represent solutions of Laplace’s equation satisfying all of the requisite 
boundary conditions. Brodetsky (1923) chose, in effect, s, x 0.96, the lower limit of 
the above range, by assuming that the free streamline has zero curvature a t  the 
separation point, but there was no clear reason why that particular condition was 
appropriate. Kawaguti (1953) reasoned that it was an interaction between the 
potential flow and the boundary-layer flow which led to separation and so used an 
iterative approach to see a value of s, for which both the potential flow and the 
boundary-layer flow separate at the same point. Using a hodograph method to 
calculate the potential flow, with a truncated series expansion to represent the 
conformal mapping, and an approximate integral treatment of the boundary layer 
flow, he found that the iteration converged once s, x 1.01. From this, and it is not 
clear how, he concluded that s, x 0.96 was likely to be the separation point if both 
the potential and boundary-layer flows were calculated more accurately. It was not 
until Sychev (1972) used a triple-deck argument to support this assertion that the 
reason for that particular choice of s, became apparent. In that paper a self-consistent 
asymptotic solution was proposed which was able to resolve the singularity in the 
boundary-layer solution near the separation point, a feat that was not possible under 
the previous triple-deck proposal by Stewartson (1970). The existence of such a 
solution was confirmed numerically by Smith (1977) and led to more detailed 
descriptions of the complete flow in Smith (1979, 1985). 

On the basis of the theory in Smith (1977), which applies equally to the 
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rotating-fluid problem here (Page 1983), the appropriate condition to place on the 
flow in order to ensure the correct choice of s, is that not only should U, be continuous 
at s,, but also aUo/as. This in turn ensures that the free streamline has a zero 
curvature at s, and also that the tangential pressure gradient along the cylinder afr,/as 
is continuous. Matching the flow against the cylinder for s < s, with that on the free 

au0 1 - (8,) = -- 
as A’ 

streamline it follows that 
(5.5) 

Having determined the condition (5.4) on the free streamline and the separation 
condition (5.5), it now remains to solve Laplace’s equation and calculate the shape 
of the stagnant region. In $6 some features of this solution are outlined, prior to 
solving the problem numerically in $7. 

6. Some features of the flow 
Many of the detailed features of this flow can be proposed on the basis of the 

solution to the equivalent non-rotating problem. It is useful to review these, and to 
obtain some other specialized features, before proceeding to solve the problem 
numerically because the choice of numerical technique is somewhat dependent upon 
them. 

One feature which is peculiar to the velocity variation given by (5.4) is that an 
upper bound can be placed on the length of the free streamline. This is possible 
because Uo(s) must, by definition, be positive along a free streamline and as a result 
the term (s-s,)/A in (5.4) cannot exceed U,(s,). It is then clear that the length of 
the free streamline can be no larger than AU,(s,) and for a cylinder this would be 
unlikely to exceed 2A. An immediate consequence of this is that the free streamlines 
leaving from either side of the cylinder must meet a finite distance downstream and 
hence the area of region I1 must be finite. Also, unless U, is identically zero a t  the 
reattachment point, and there is no reason why it should be, the two free shear layers 
will join together in a cusp. This property will become clear once the flow near the 
reattachment point is examined in detail. 

Another feature which might be expected on the basis of the upper-bound 2A 
calculated above is that the length of the free streamlines, and hence the size of the 
stagnant region, increases as h is increased. As A + 00 it is reasonable to expect that 
the stagnant region has a length of O(A) and that U, is constant along the free 
streamlines when viewed on the ‘body scale’, i.e. an O(1) lengthscale. As a result the 
flow for A % 1, when viewed from near the cylinder, is similar to the non-rotating 
Kirchhoff flow. This feature is discussed further in $9. 

Using arguments similar to those in Imai (1953), or otherwise, the form of the 
stream function $, can be deduced in the vicinity of the separation point and the 
strength of the singularity determined. For a flow in which both U ,  and aU,/as are 
continuous at s = s, it follows that the radial position of free streamline for s > s, 
can be described by a function T ( S )  with 

[T (s ) -  11 cc (S-s , ) f  for (s--5,) 4 1. (6.1) 

The local form of $, can also be used to show that U,(s) for s < s, has the property 
that 

and hence that a2U,/as2 is not finite at the separation point. 
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Local properties of $, at the reattachment point, where the free streamlines end, 
can also be calculated in a similar manner. A t  that point, where x = x, and s = 5, 
say, i t  is reasonable to expect that U, joins continuously onto the flow for x > x,, 
but there is no reason to suppose that aU,/as will be continuous, or even finite at 
x = xQ. To require the latter would, in fact, be overspecifying the problem, and there 
is no evidence, based on any local analysis of the reattachment point, to suggest that 
aU,/as should not be discontinuous there. Using arguments similar to those in the 
previous paragraph, it is clear that the position of the free streamline for s < s, can 
be described by a function y(s) with the property 

The local behaviour of $, can also be used to show that along the line y = 0 for x > x, 
the velocity U, will increase from its value at reattachment in proportion to (x-x,); 
for (x-x,) 6 1 and eventually tend to U, = 1 as x+ 00. All of these features are 
similar to those found at the trailing edge of the eddy-scale flow in Smith (1985), which 
is based on the constant-vorticity model of Sadovskii (1971). 

7. Numerical method 
The free-streamline problem arising out of the discussion in $5 is to solve Laplace’s 

equation VZ$, = 0 subject to the boundary conditions $, = 0 on the cylinder surface, 
@, = 0 and (5.4) on the free streamline, and $,+- y as r+m, with the supplementary 
condition (5.5) specifying the separation point 8,. Using the symmetry of the problem 
about the line y = 0, attention can be restricted to the portion of the flow with y 3 0 
by applying the additional condition $, = 0 on y = 0 for x < - 1 and x > x,, where 
x, is the position of the reattachment point. 

There are a number of possible techniques which could be used to solve the problem 
posed above. The first is the hodograph technique, which is the usual method of 
solving the non-rotating Kirchhoff problem, where the free streamline is mapped 
conformally on the perimeter of a unit semicircle. This technique is less useful in this 
case because the free streamlines join behind the cylinder in a singular region which 
must be treated with some care. A second technique might be to discretize the portion 
of the cylinder 0 < s < ss and also the free streamline s, < s < s,, and solve for U,(s) 
and r (s )  respectively using a boundary-integral method with a radial polar grid. The 
main difficulty with this proposal is that it is difficult to resolve accurately the form 
of the free streamline near the singular point at x, in terms of a function of 19. The 
method chosen for this paper is, in some sense, a combination of the two methods 
above ; first the region outside the circle is transformed into the upper-half plane using 
a conformal (Joukowsky) mapping z’ = x’ + iy’ = f(x + iy), then a boundary-integral 
method is used to solve Laplace’s equation in the image plane. The inverse trans- 
formation x = x+iy = g(z ’ )  can then be used to recover the solution, in the form of 
an integral, in the original region. This technique removes the need to calculate any 
quantities other than the transformed shape y‘ = Y(x’) of the free streamline, because 
the image of the cylinder boundary becomes part of the line of symmetry y’ = 0 under 
a Joukowsky transformation. 

The particular choice of conformal transformation used in this study is 

2’ =f(z) = ~(x;+x;)+~(x:-x;) z+; , ( ’> 
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FIGURE 2. Illustration of the region-I flow in both the physical z = x+iy plane and the 
conformally mapped image plane z’ = x’ + iy‘. 

where xi and xi are the images of the forward and rear stagnation points, 
respectively. The inverse transformation to (7.1) is given by the function 

2 
(7.2) 

with the branch cut for the square roots chosen to lie on the line y‘ = 0 between xi 
and xi. The actual values of x; and xi are determined by requiring that the separation 
point ss map into the origin and the reattachment point x, map into the point z’ = 1. 
As a result the free streamline is mapped into a curve y’ = Y(x’) for 0 < x’ < 1, and 
the values xi and xi must lie in the regions xi < 0 and 0 < xi < 1.  All of these features 
are illustrated in figure 2, where schematic diagrams of both the physical and image 
planes are shown. For simplicity in later presentation a function Q(x’, y’) will be 
defined so that Q = I dgldz’ 1, which is the local magnification factor of the transform- 
ation, and Q, will be defined as the value of Q for r’ % 1, i.e. Q, = 4/(4-4). 

As a result of the above, the problem to be solved in the transformed plane is to 
find a solution of V’2+bo = 0 in the image of region I, which satisfies the boundary 
conditions $o = 0 on y’ = 0, +bo+-Qco y‘ as r’+co, with jk0 = 0 and a trans- 
formed version of (5.4) to determine a@,/an’ on the curve y’ = Y(x’). In this paper 
the solution to this problem is written in terms of the boundary integral 

z = g(2’)  = ~ , {z’ -+(xi + xi) + [ (2’ - x;) (2’ - x;)]f}, (4 - Xl) 

$ o ( x ’ ,  y’) = - Q ,  
2n (7.3) 

along the free streamline y; = Y(x;) ,  where 

RI_ = [(~’-x;)~+(y’-yY;)~]f, R; = [(~’-~Y;)~+(y’+yi)~]f (7.4) 

are the distances of the point (x’, y’) from the points (xi, yi) and (xi, -yi), It is 
convenient to change the variable of integration in (7.3) from s’ to x’, and use the 
properties 

dn = Q dn’, ds = Q ds’, (7.5) 

so that the equation can be written in the form 

The quantities in the integrand of (7.6) are then given by 

and (5.4), and 
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The integral (7.6) forms the basis for the numerical method used in this paper but, 
unlike the usual application of these boundary integrals (as, for example, in Jaswon 
& Symm 1977), it  is not the quantity U, that is being sought but rather the position 
of the boundary curve Y(s’). This latter situation is similar to that encountered in 
some free-surface or bubble problems, for example that in Miksis, Vanden-Broeck & 
Keller (1981). The major difference between the two types of problem is that solving 
for U, given Y(z’)  is a linear problem, while seeking Y(z’ )  given U, requires that a 
nonlinear integral equation be solved, and clearly from the form of (7.6), (7.7) and 
(7.8) the dependence of the integral equation on the shape Y(s’) is extremely 
complicated. While this produces no difficulties in principle, because such nonlinear 
problems can be solved iteratively using Newton’s method, in practice the calculation 
is algebraically intricate because every quantity in the integrand depends on Y(z’) 
in some way. It is also worthwhile noting at this point that the singularity in the 
kernel of (7.6), when differentiated with respect to Y, is sufficiently strong to ensure 
a well-conditioned inversion for Y(x’). 

To solve (7.6) the range of integration 0 < 2’ < 1 is the first split into a finite 
number n of subintervals, with midpoints z; for i = 1, . . . , n. Then, given an initial 
guess for the values of Y(z; ) ,  and the three quantities U,(s,), s, and x,, the integral 
can be evaluated using the midpoint rule. The resulting function $,(z’, y’) is then an 
approximate solution of Laplace’s equation, satisfying the boundary condition on $o 
a t  infinity. To obtain the solution appropriate for this problem it is necessary to place 
a total of n + 3 constraints on that integral which, in effect, determine the values of 
Y(s;) ,  Uo(ss), s, and z,. These contraints are: 

(1 ,  - * - ,  n)  $,cx;, y(x;)) = 0, ’r 
I 
I 

(n+ 1) 

(n+2) aU,/as continuous at  s,, 

U,  continuous at s,, 
(7.9) 

(n+ 3) U, continuous at s,. J 
Here the first n conditions ensure that Y ( d )  is a streamline while the last three are 
based on properties discussed in 95. To apply the last three constraints on the solution 
(7.6) requires, in practice, that the integral be differentiated and evaluated at the two 
points (d, y’) = (0, 0) and (1, 0). This is straightforward, since it is only necessary 
to differentiate the kernel function, and so the details are omitted here. 

In this study the simultaneous nonlinear equations which arise from (7.9) were 
solved using Newton’s method, with the derivatives of all quantities evaluated 
exactly with respect to each of the n + 3 unknowns. In  practice it was found that the 
error in the iterated quantities did not, in general, converge quadratically to zero as 
it should; this was probably due to the ill-conditioning in the method with respect 
to the values of Ass and A Y(z; ) .  Various methods were tried in order to minimize this 
effect, the most effective of which was to require that Y ( z ; ) /  Y ( z i )  be proportional 
to . ( x ; /x i ) t ,  in accordance with (6.1), rather than requiring that $.,(z;, Y(z i ) )  = 0. 
Another possible difficulty which could arise in this method, but which was not 
discussed by Miksis et al, is that a solution to the discretized nonlinear problem, which 
is only equivalent to (7.6) in the limit as n+ 00, does not necessarily exist for modest 
values of n. As a result the errors in the unknown quantities would not converge to 
zero, but rather would to approach a minimum value which, in turn, would decrease 
as n is increased. This suggests that perhaps a least-squares approach, with (7.6) 
evaluated at more than n points, would be a more suitable method for this type of 
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problem since i t  would be likely to remove both the difficulties described above. It 
turned out, however, that the minimum error was within the acceptable limit of 
IAYJ < 0.001 Y,,, for n = 50, so this alternative method was not pursued in this 
study, although it would probably improve the numerical solutions in any future 
study. 

Since the quantity U ,  in the integrand of (7.6) varies smoothly along the integration 
curve y’ = Y(x’), the evaluation of the integral is relatively straightforward. Over each 
subinterval the singular part of the integrand, arising from the logarithmic kernel, 
was evaluated exactly using linear interpolation for Y(x’) and known integrals. The 
only quantity appearing in the integral which needed any other type of special 
treatment was the derivative d Y/dx’ near x‘ = 0 and x‘ = 1 ,  where the differencing 
scheme used was modified to take into the account the behaviour of Y(x’) from (6.1) 
and (6.3), viz 

Y(x’) a (x’)f  as X’-+O+,  ~ ( x ’ )  a (1  -x’)3 as x’+ I-. (7.10) 

The method described above is, in fact, quite similar to that used for a constant- 
vortex flow by Pullin (1984), where a condition equivalent to Y(x’) cc (.’): as x’+O+ 
was satisfied at the edge of a flat plate. A more recent study by F. T. Smith (1986) 
of the Sadovskii (1971 ) vortex uses a different numerical method and is able to capture 
such behaviour of the free streamline quite accurately, but unfortunately it requires 
a large amount of under-relaxation to ensure convergence. The method used in this 
study converges within the tolerance stated above in five or six iterations. 

8. Results and comparison with experiments 
In figure 3 the streamlines for the flow past a circular cylinder are shown for four 

values of A > t ,  based on the theory outlined in $ 5  and using the numerical method 
described in $7.  From these plots it is clear that the length of the stagnant ‘bubble’ 
of fluid behind the cylinder increases as A increases, as was predicted in $6. They also 
show a pleasing resemblance to both the experiments in Boyer & Davies (1982) and 
the streamline plots in Matsuura & Yamagata (1985). 

For h = 1 the region occupied by the stagnant fluid is quite small and confined 
to the vicinity of the rear stagnation point, where the flow first starts to separate. 
If A is reduced from 1 down towards the critical values of 2, the size of the stagnant 
region decreases smoothly to zero, merging into the attached-flow solution in a 
regular manner. Undoubtedly a perturbation solution could be calculated for 
( A - t )  4 1, but there does not seem to be much to be gained from that. As A is 
increased to 2, shown in figure 3(b), the length of the bubble exceeds the cylinder 
radius and the flow behind the cylinder is beginning to be significantly distorted. It 
is interesting to notice, however, that the streamlines in front of the cylinder for both 
A = 1 and A = 2 are very similar to those for the attached flow. This is no longer the 
case once A = 5 when the stagnant region has roughly the same area as the cylinder 
and extends more than three radii downstream, although its width does not 
significantly exceed that of the cylinder. In fact, the shape of the obstacle as a whole 
is reminiscent of an aerofoil. Once A = 10 the stagnant region occupies a large region 
of the flow and extends about six cylinder radii downstream, and its length appears 
to be increasing in proportion to A ,  a feature which is confirmed in figure 5 (discussed 
in more detail later). This conforms with the decrease in importance of the ‘friction’ 
terms in (3.9), which arise through Ekman suction, as A is increased so that the flow 
pattern on the ‘body scale ’ conceivably approaches a form similar to the Kirchhoff 
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FIGURE 4. Plots of the tangential velocity U J s )  along the cylinder and on the free streamline for 
the same values of h as in figure 3, with an additional curve shown for the flow with h = 4. The 
separation points, is marked with a dot on each curve and the reattachment point s, is distinguished 
by the discontinuity in gradient. 

solution in a non-rotating flow. This does not mean that the flow for h >> 1 never 
reattaches; in fact if both spatial coordinates are scaled with h then it can be expected 
that the flow of the ‘eddy scale’ still reattaches in much the same way as it does for 
smaller values of A,  but that the cylinder reduces in importance when compared to 
the size of the stagnant region. More details on the flow in this limit are presented 
in $9. 

In figure 4 plots of the tangential velocity U, on the streamline $, = 0 are shown 
for s 3 0, which includes the cylinder surface, the free streamline and the wake of 
the separation bubble. Curves are plotted for the same values of A as in figure 3, but 
with h = ?j shown also for comparison. The separation points, is marked on each curve 
and it is apparent that this moves forward monotonically from m as A is increased 
from the critical value A = f. Once h = 10 it is already close to the non-rotating value 
of s, x 0.96, which it should approach as h+00 on the basis of the remarks in the 
preceding paragraph. For large values of h the flow accelerates rapidly around the 
forward part of the cylinder, reaching a maximum value just before the separation 
point. The velocity then decreases linearly with s, in accordance with (5.4), until the 
end of the free streamline is reached. It is also clear from figure 4 that the velocity 
at the reattachment point, s = s,, increases with h and is always positive for h > f. 
In line with the comments in $6, U, increases from U,(s,) in proportion to (8-8,); 
for (s-s,) + 1 and it tends to the free-stream value of U,, = 1 as s-+ 00. 

Since the configuration being analysed in this paper formed part of the study by 
Boyer & Davies (1982), namely that with p = 0, it is possible to compare the 
numerical results above with the experimental results in their paper. A first 
impression is that the appropriate photographs look very similar to the plots in figure 
3 and have broadly the same properties. Apart from a solely qualitative comparison, 
which seems to hold up particularly well, a quantitative test on the theoretical results 
can also be performed using the experimental values for the relative length of the 
separation bubble, plotted in figures 16, 17 and 18 of their paper. In the conclusions 
to their study, Boyer & Davies demonstrated that the relative length of the 
separation bubble increased with their parameters HIR and Ro, and decreased with 
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FIGURE 5. Plot of the ‘bubble length’ E (see text) against A obtained from the experimental data 
in Boyer & Davies (1982) for d = 0.92(A); 1.37(V); 2.78(A). Also shown (m) are the values 
calculated in the numerical study by Matsuura t Yamagata (1985) for Sa/A = 0.005 (their 
Re = 400); 0,  the results of the present study; 0,  and the corresponding values of (xe- 1) .  

their Ek = +PE. This can be compared with the results of this paper by expressing 
A in terms of their parameters, which gives that 

H Ro A = - -  
R (2Ek):’ 

and observing that this also increases under each of the conditions mentioned above. 
This is consistent with the trend noted in the first paragraph of this section. The 
experiments described in their paper were performed for up to eight values of Ro, 
for four values of Ek and for three values of HIR. As a result they should provide 
enough data to be able to perform a conclusive comparison with the theory in this 
paper, which predicts that the bubble length is a function of A only. To examine this, 
their ‘bubble length ’ E ,  defined as the distance from the rear stagnation point to the 
point a t  which the half-width of the bubble has decreased to 0.2, is plotted in figure 
5 against the values of the parameter A, using all of the data given in figures 16, 17 
and 18 of their paper. A different symbol is used for each value of d, which in practice 
meant a cylinder of different radius. Despite a considerable scatter in the data, 
particularly for small values of A where it is difficult to determine whether or not 
the flow has separated, there is an apparent increase in E with A. Such scatter is 
understandable because in all the experiments the values of 8, the scale thickness of 
the free shear layer, is non-zero and so it is not easy to determine where the edge 
of the bubble actually lies. Also shown in figure 5 are the values of B measured from 
the plots of the inviscid flow in figure 3, showing an approximately linear increase in 
E with A,  with E x 0.4A for A 9 1. This is rather less than the upper bound 2A proposed 
in 36 for the total length of the free streamline. 

From the experimental results, it is not particularly clear that a single curve € ( A )  
can encompass all of the data. Also, once A > 3 the experimental values of E seem 
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to be tending to a limit between 2 and 3 while the theoretical values increase in 
proportion to A, thereby exceeding the experimental values by a considerable 
amount. There are several potential explanations for this, each of which is due to 
effects neglected in this study. First, for larger values of A there can still be some 
residual vorticity in the flow near the cylinder because the vorticity which is 
unavoidably present at  the inflow of the channel decays on a lengthscale of O(hZ*). 
That some vorticity is remaining in the flow near the cylinder is actually quite clear 
in many of the photographs. However, the most likely effect of this residual vorticity 
is to distort the symmetry of the flow rather than significantly affect the length of 
the bubble. A second possible explanation is due to the presence of the sidewalls of 
the channel which could restrict the size of the bubble to some extent, although this 
explanation is not supported by the fact that the results which are most affected are 
those for the cylinder with the smallest radius (i.e. largest d). Thirdly, and most 
reasonable, is that the reduction in length could be due to viscous effects in the fluid, 
such as those considered in $2.4 of Smith (1979) which introduce modifications to 
the flow of O(d). Such modifications are equivalent to a displacement of the 
separation point and relaxing the requirement (6.1) to include an (s-8,); term that 
is proportional to 8. Numerical trials in which s, is moved towards the rear of the 
cylinder suggest that such an effect can shorten the length of the bubble, but a precise 
calculation of the modifications requires knowledge of the skin friction at  s,, which 
will be calculated in a later study of the ,@-layer effects (P. W. Duck & M. A. Page 
1987, paper in preparation). In the meantime, it is encouraging to ‘note that the 
predicted bubble length, shown in figure 5,  is least accurate in the experiments with 
d = 2.78. Since these experiments tend to have the largest values of E and hence the 
largest values of the shear-layer thickness 6, which is proportional to both d and Ef, 
they will also contain the most significant O(d) modifications. To illustrate this, 
typical values of 6 calculated for d = 0.92, 1.37 and 2.78 are 6 x 0.10, 0.15 and 0.32, 
respectively, so clearly viscous effects will be most noticeable in those experiments 
with d = 2.78, which incidentally have the largest values of A. Furthermore, the 
eighth power of such values is clearly not small and so it is likely to be able to explain 
the discrepancies of 50 % apparent in the experimental values of E plotted in figure 5.  

Also shown in figure 5 are the numerical results for the bubble length 8 taken from 
those presented for Re = 400 in figure 5 of Matsuura & Yamagata (1985). For shorter 
bubbles these show excellent agreement with the numerical results from this paper, 
but for A = 10 the length is 25 % shorter than that predicted by the inviscid theory. 
This is, however, in line with the trend in the experimental results noted above, since 
6 is also largest in that numerical experiment. Although it is not shown here, plotting 
the numerical results of Matsuura & Yamagata (1985) for smaller values of their Re, 
which correspond to larger values of 6, shows a consistent shortening of the bubble 
as Re is decreased with A fixed, further supporting the proposal above that the 
shortening is due to viscous effects. 

Matsuura & Yamagata (1985) also calculate both the drag coefficient of the cylinder 
and the pressure distribution on the surface, but unfortunately the present theory 
is unable to predict either of these results. This is because the ‘modified pressure’ 
4 includes the contribution to the stream function of order B, which cannot be 
calculated without futher information on the higher-order flow field. 

The formal restrictions on the parameters in this study are that Ro < B, for the 
same reasons as outlined in Page (1983), that d should be 0(1) and that E should be 
small. In practice, when comparing the theory with experiments, it  is usually more 
appropriate to check the size of 6 = d(iB)t, the scale thickness of the ,@ layer, because 
the theory in this paper relies implicitly upon 6 4 1 .  
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FIQURE 6. Schematic diagram of the higher-order flow regions referred to in $9. 

9. Higher-order effects 
The stream function shown in figure 3 represents the leading-order flow in only one 

of the regions described in $5, and so the complete solution to the problem addressed 
in this paper has not yet been described. To do this it is necessary to consider viscous 
effects in the fluid, and this leads to the introduction of several other flow regions, 
additional to those shown in figure 1.  A particularly useful guide to the form of these 
regions comes from the work on the non-rotating problem, and the results in Smith 
(1979, 1985). Furthermore, those studies, and in particular the second, sound a 
warning that the solution presented in $15 and 8 cannot be regarded as the correct 
limit of the equations as E+O until the higher-order viscous effects have been 
examined in detail. As in Smith (1985), no attempt will be made here to actually solve 
for the flow in the higher-order regions, but rather a possible structure will be outlined 
which the author believes can be reasonably expected to have a self-consistent 
solution, if not unique. 

The structure to be discussed in this section is illustrated in figure 6, and it can 
be seen that there are two regions, 111, and III,, additional to those shown in figure 1. 
Also, once viscous effects on the interior flow fields, I and 11, are taken into account 
i t  soon becomes clear that it is more suitable to expand variables in powers of 6 than 
in powers of I$, as was done in (3.3). In fact, as Smith (1979) points out, 3 is probably 
even more appropriate, but this effect will be included within the O(1) flow field, in 
the manner suggested in that paper. As a result of the O(S) corrections above, from 
this point all terms in the expansions of dependent variables will be referred to by 
their order with respect to an expansion in powers of 6, so for example u1 should now 
be thought of as u2. 

The source of the O(6) perturbations to the flow fields is the displacement effect 
of the viscous l& layers in each of the subregions of 111, and the consequent mass 
flux of the same order. First, like the equivalent boundary layer in a non-rotating 
fluid, region 111, is entraining an O(6) flux as it accelerates up the cylinder. This 
induces a non-zero term in region I ,  which in turn has a higher-order effect of region 
111,. Also contributing to k1 in region I are the O(S) flux expelled by the free shear 
layer 111, as the flow decelerates, and the O(6) inflow into region 111, as it recovers 
fluid on its centreline. It is now appropriate to consider what happens near the 
reattachment point E. As in Smith (1985), part of the velocity profile in region 111, 
forms into the wake in region III,, and part of it is turned by 180" and proceeds along 
the line of symmetry in region 111,. The turning process is likely to be similar to that 
shown in figure 2 ( b )  of Smith (1985) or figure 4 of Messiter, Hough & Feo (1973), with 
the lengthscale of the turning region being sufficiently small that viscous and Coriolis 
forces can be neglected. As a result the portion of the profile with $l c 0 is simply 
advected around the corner at  E. From this starting profile the flow in region III,, 
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which is really just another B layer, forms a jet along the line y = 0 and expells fluid 
into the interior of region 11. This induces a flow of O(6) in region I1 which, according 
to the results in $5, is stagnant to leading order. As a result there is some flow in 
region 11, albeit small, in the experiments of Boyer & Davies (1982). It is also clear 
from several of the experiments, for example those shown in figure 19 of their paper, 
that the jet in region 111, is carrying fluid from the reattachment point towards the 
cylinder. 

The flow in each of the Ei layers, making up the various regions 111, is governed 
by a momentum equation of the form 

where V and ?i have been scaled by 6, the direction of n is chosen in a right-handed 
manner and iie is the flow outside the layer. In particular, in region 111, the external 
flow iie is zero and therefore the jet of fluid is continually losing momentum through 
Ekman ‘friction’. Even so, there is no reason to suppose that all of this momentum 
would have been lost by the time the jet reaches the rear stagnation point R. As a 
result, a fifth shear layer, labelled 111, in figure 6, must form on the rear surface of 
the cylinder, transporting fluid up towards the separation point S. Just as occurred 
near the reattachment point E, the jet profile would probably turn the corner a t  R 
in an inviscid manner. As suggested in Smith (1985), this layer can, in turn, separate 
before S forming yet another region of interior flow near S. For simplicity this has 
been omitted from figure 6, and the interested reader is referred to $3.2 of that paper. 
Ignoring this possibility, the jet would again turn inviscidly at  S and become the lower 
half of the initial profile on III,, with the upper half having come from region 111,. 
This profile then proceeds along the free streamline, entraining fluid from region I1 
in the process, until it  reaches the reattachment point E and the whose process begins 
again. 

As mentioned in the first paragraph, this structure has not actually been 
calculated and i t  will, in fact, form the basis of a later study of the higher-order effects 
in this configuration (P. W. Duck & M. A. Page 1987, paper in preparation). The 
crucial test of its suitability is whether a periodic solution exists around the boundary 
of region 11. However, it  does seem to close both the O(1) and O(6) mass flux, and 
i t  is not contrary to either the apparent motion in Boyer & Davies’ photographs or 
the streamline plots in Matsuura & Yamagata (1985). 

The next point worth considering is the form of the flow for large values of A. 
Based on the results in $8 it is clear that the length of the bubble increases in 
proportion to h for h + 1. The increase in the width is not so clear, but from the form 
of the Kirchhoff flow it would be expected that the width of the bubble increases in 
proportion to A1 in the ‘body scale ’, but decreases proportional to A-4 relative to the 
‘eddy scale’. The flow in this limit can probably be calculated using ‘slender-body’ 
theory (see for example Thwaites 1960, p. 267) and a limiting form for the shape of 
the stagnant bubble calculated. This was not attempted in this paper, but will form 
the basis of a future study by the author. It is worthwhile to contrast the above with 
the form for the non-rotating flow proposed in Smith (1985); in that case (5.1) is not 
available to ‘remove ’ vorticity from the eddy, so a wide region of fluid with constant 
vorticity forms. The flow for a rotating fluid is therefore more like that proposed in 
Smith (1979) than Smith (1985), but with the extra regions 111, and 111,. Also, unlike 
the non-rotating flow, the width of the shear layers and jets remains narrow relative 
to the cylinder for 6 + 1. On this point, the reader should note that the layers 
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actually have thickness of O(6A-:) for A 9 1 (Barcilon 1970; Page 1983) so for s of 
order A ,  n is still only O(S). On the ‘body scale’, Kirchhoff flow seems to be the most 
suitable limit and as a consequence the separation point s, should tend to 0.96 as 
A+m. 

10. Conclusions and remarks 
Despite the deficiencies noted in $8 when comparing the numerical results with the 

experiments, the theory described in this paper is able to successfully describe the 
dominant features of the experiments in Boyer & Davies (1982), particularly when 
E is small enough that 6 = d(!p@)i 4 1. It is unfortunate that the experiments for 
which that condition is satisfied were limited to relatively small values of A,  but even 
so there seems to be sufficient support for the theory on the basis of the qualitative 
comparisons for it to be considered verified. In fact, even if experiments were 
available for larger values of A it is quite likely that they would be unsteady, due 
to a shear-layer instability similar to that in Becker & Page (1987), and hence 
unsuitable for direct comparison anyway. 

By combining the results of this study with those in Walker & Stewartson (1972), 
Page (1985) and Page & Cowley (1987), a complete description of the flow past a 
circular cylinder in a rotating fluid can be constructed. This is particularly interesting 
because by increasing the single parameter A ,  with S asymptotically small, this 
problem provides a rare example of a flow which starts off as fully attached, with 
exact solutions available for the flow in both the interior and the boundary layer, 
through to a flow which develops a singularity within the boundary layer at the rear 
stagnation point, with a thin wake behind the body, and which further develops into 
a separated flow, with the separation bubble increasing in length as A is increased. 

One interesting feature of the flow is that the tangential velocity U, varies around 
the cylinder in such a way that the quantity (AaU,/as+l) is positive until 
immediately before the separation point, and then it becomes zero and remains at 
precisely that value on the whole of the free streamline. It is interesting to compare 
this with the necessary condition for separation, originally derived by Buckmaster 
(1969), which states that separation cannot occur off a solid boundary when the 
interior flow is such that ( A  aU,/as+ 1)  is positive everywhere on that boundary. This 
condition was used by both Page (19824 and Becker & Page (1987) to examine other 
flows where separation of the E! layer can be important and in both those cases fully 
attached, and apparently self-consistent, Ef-layer flows could be calculated even 
when ( A  aU,/as + 1)  was negative in some parts of the flow. For the flow past a cylinder 
this seems to be prevented by the development of the singularity at  the rear 
stagnation point (Page 1985; Page & Cowley 1987), which ensures that separation 
occurs as soon as A is large enough for (AaU,/as+l) to be zero at that point. For 
flows in which it can become negative, a t  the value A, say, it would be expected that 
the flow remains attached until the corresponding Ef-layer flow breaks down with 
a Goldstein singularity as A, say. A ‘snap’ separation, like that in Stewartson, Smith 
& Kaups (1982), might then be expected, with A playing a similar role to the angle 
of incidence B in that study. 

Although these results are outlined for flow past a cylinder, they apply equally to 
a class of bluff obstacles on which the quantity aU,,/as decreases monotonically 
around the body between the forward and rear stagnation points. For such bodies 
the criterion for separation would not necessarily be A > +, but rather it would depend 
on the value of aU,/as at the rear stagnation point (Buckmaster 1969). For 
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convenience this paper has concentrated on the flow past a cylinder because of the 
relatively simple geometry, but all of the results are equally applicable to flows past 
any obstacle in the above class. 
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